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Let N>—G TD H be a diagram in the category of groups.

The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k,
3. es=1.

Every element g € G can be written

g=g-(se(g”") - se(g))
=(g-se(g)) - se(g).

Notice that g - se(g~ ") is sent by e to 1.

Thus there exists an n € N such that k(n) = g - se(g™}).
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Split extensions of groups

k € . .
Let N >—— G T H be a split extension of groups.
s

For each g € G there exists an n € N such that g = k(n) - se(g).

Suppose g = k(n) - s(h) and apply e to both sides.
e(g) = e(k(n) - s(h))
=1-es(h)
= h.
Thus if g = k(n) - s(h), it must be that h = e(g).
Furthermore if
k(n1) - se(g) = g = k(n2) - se(g),

then n1 = ns.
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Split extensions of groups

k € . .
Let N>—G TD H be a split extension of groups.

Consider the map ¢: N x H — G, ¢(n,h) = k(n) - s(h).

This map is a bijection of sets and so has an inverse ¢!,

N x H inherits a group structure from ¢,

(n1,h1) - (2, ha) = @~ (@(n1, h1)@(na, ha)),

turning ¢ into an isomorphism of groups.

Intuitively (nq, 1) - (ng, he) is the element sent by ¢ to
k(n1) - s(hy) - k(ng2) - s(he).

There is an alternative way to view this multiplication.
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k = . .
Let N >—— G T H be a split extension of groups and let
s

p(n, h) = k(n)s(h).
For each g € G, there is a unique n € N such that g = k(n) - se(g).

1

The set map ¢ = w1~ selects this unique n, which is to say that

g = kq(g) - se(g).

We can use ¢ to define the following multiplication on N x H
(n1, h1) - (ng, ha) = (n1 - q(s(h1)k(n2)), hah).
The map ¢ will send (n; - q(s(h1)k(n2)), hihsa) to
k(ny) - s(hy) - k(ng) - s(he)

and so yields the same multiplication. 5
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The map a(h,n) = q(s(h)k(n)) is an action of H on N.
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They corresponds via currying to maps a: H x N — N satisfying
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3. a(h,1) =1,

4. o(l,n) =n
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Semidirect products of groups

k e
Let N>— G ? H be a split extension, ¢(n,h) = k(n)s(h) and

g=me L.
Given any action o of H on N
(n1,h1) - (n2, he) = (n1 - a(hy,nz), hihs)

turns N x H into a group.
We call the resulting group a semidirect product and write N x, H.

A semidirect product N x, H naturally gives a split extension

e
N»LNNQH:DH
s

where k(n) = (n,1), e(n,h) = h and s(h) = (1, s).
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To what extent did the preceding arguments use group inverses?
Inverses were only used to establish that we can always write

g =k(n) - s(h)
for unique n € N and h € H.

Thus the above results apply to any split extension of monoids

(&
S

where each g can be written g = k(n) - s(h) for unique n and h.

Such split extensions we call Schreier extensions.
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A weaker notion

There exist split extensions of monoids which are not Schreier.
This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

k e

Ne——G==H,
in which each g € G can be written g = k(n) - s(h) for some n and h.

Is there any reason to think that this might be worth studying?
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Topological spaces as monoids

Let X be a topological space and O(X) its lattice of opens.

There is a natural way to associate a monoid to a topological space.

e O(X) is closed under binary intersection.

e Since X € O(X), the binary intersection has an identity.
Thus (O(X),N, X) is a monoid.
Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call frames.

10
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Artin glueings of topological spaces

Let N = (|N|,O(N)) and H = (|H|,O(H)) be topological spaces.

What topological spaces G = (|G|, O(G)) satisfy that H is an open
subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.
It must be that |G| = |N|U |H].

Each open U € O(G) then corresponds to a pair (Uy, Uy) where
Uv=UNNand Uy =UNH.

Thus O(G) is isomorphic to a frame L containing certain pairs
(Un,Ug).

11
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Artin glueings of topological spaces

For each U € O(H) there is a largest open V € O(N) such that
(V,U) occurs in Lg.

Let fo : O(H) — O(N) be a function which assigns to each
U € O(H) the largest V.

This function preserves finite meets.
We have that (V,U) € L¢ if and only if V C f(U).

Given any finite-meet preserving map f: O(H) — O(N) we can
construct a frame GI(f) as above.

This frame GI(f) will satisfy the required properties and we call it the
Artin glueing of f.

12
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Artin glueings as weakly Schreier extensions

Let N and H be frames and let f: H — N preserve finite meets.

The following is a split extension of monoids

k @
N>—>G1(f)4487‘>H

where k(n) = (n,1), e(n,h) = h and s(h) = (f(h), h).
Since (n, h) € GI(f) means n < f(h) we have that

(nv h) = (n7 1) A (f(h)v h)
= k(n) A s(h).

The diagram is weakly Schreier and it can be shown it's not Schreier.

All weakly Schreier extensions of frames correspond to Artin glueings*

13
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Let N>—G TD H be a weakly Schreier extension and let

@(n, h) = k(n) - s(h).
The map ¢ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

(nl,hl) ~ (TLQ,hQ) <~ k‘(nl) o S(hl) = kj(ng) o S(hg).

As in the group case, ¢ induces a multiplication on N x H/E.
[n1, ha] - [n2, ho] = @ (@ ([, 1))@ ([n2, hal))

Intuitively [n1, k1] - [ng2, hal is the equivalence class mapped by @ to

k:(nl) . S(h1) 0 k(ng) o S(hg). 1
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Weakly Schreier extensions

k e
Let N =—— G ——= H be weakly Schreier, let p(n,h) = k(n) - s(h)

and let F be the univalence relation induced by ¢.
A map q: G — N satisfying that for all g € G
g9 = ka(g) - se(g),
we call a Schreier retraction.
The class [n1 - g(s(h1)k(n2)), hihs] is sent by @ to
k(n1) - s(h1) - k(n2) - s(hz)

for any Schreier retraction gq.

Thus the multiplication is again determined by a map

a(h,n) = q(s(h)k(n)).
ii5)
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Let N =—— G ——= H be weakly Schreier, let p(n,h) = k(n) - s(h)

B
and let E/ be the equivalence relation induced by ¢.

The equivalence relation E satisfies the following properties.

1. (n1,1) ~ (ng,1) implies n; = ng,

2. (n1,h1) ~ (ng, he) implies hy = ha,

3. (n1,h) ~ (n2, h) implies (nni, h) ~ (nng, h),
4. (n1,h) ~ (ng, h) implies (ny, hh') ~ (ng, hh').

Suppose h has a right inverse h*.
[ (nl,h) ~ (ng,h) implies (nl,hh*) RY (ng,hh*)
e (n1,1) ~ (ng,1) implies n; = na.

Thus for a group the quotient must always be discrete.

Any equivalence relation satisfying the above we call admissible. 10
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ni, h) ~ (ng, h) implies [nya(h,n), h] = [nea(h,n), hj,
n,h') ~ (n/,h') implies [a(h,n), hh'] = [a(h,n), hh'],
alh,nn’), h] = [a(h,n) - a(h,n’), h],

h'] = [a(h,a(h',n)), hh'],

o &> ®E

Since groups always have the discrete quotient, o must be an action.

Any map « satisfying this with respect to an admissible quotient, we

call a compatible action.
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Characterizing weakly Schreier extensions

Let £ be an admissible equivalence relation on N x H and let « be a

compatible action.

Theorem
The set N x H/E equipped with multiplication

[n1, hi] - [n2, ho] = [n1a(hi, n2), hihs),

is a monoid.

Theorem
The diagram

e
N>LN><H/E<:‘>H
s

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly
Schreier extension.

The processes described in this talk are inverses. 1
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Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient () on N x H given by

(n,h) ~ (n',h) foralln e N and 1 # h € H.

This quotient is admissible and can be identified with N U (H — {1})

where

o [n,1]—n
e [n,h] — h when h # 1.
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Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function ao: N x H — N is compatible with the quotient.
Recall that [n, h] - [0/, 1] = [n - a(h,n), hh'].

Because of the quotient n - a(h,n’) is irrelevant whenever hh' = 1.
When hh/ = 1 this means h =1 and so na(h,n’) = nn'.

Thinking in terms of N U (H — {1}) multiplication becomes

e 1 -n' the usual product in N,
e h - N the usual product in H, and
en-h=h-n=nh

20
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Consider the quotient whereby

e (n,h) ~ (n',h) if his not a left unit,
e (n,h) ~ (n',h) =n=n'if his a left unit.

This is the coarsest admissible quotient on NV x H.

When does there exist a compatible action?
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Compatible actions

Let V and H be monoids and () the coarsest admissible quotient.
The set L(H) of left-units of H forms a submonoid of H.

The complement L(H) of L(H) forms a right ideal.

e |t is clear it is closed under multiplication.

e Ifz € L(H) and h € H, then (zh)y = 1 implies that hy is a right
inverse of x.

Theorem
If L(H) is a two-sided ideal, each map o : H x N — N in which

a|r(mxn Is an action of L(H) on N, is compatible with the coarse

quotient (). Otherwise, no map « is compatible with (). *
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Otherwise, if hh' is not a left unit then things almost work completely

as most of the requirements are immediately satisfied.

However suppose L(H) is not a two-sided ideal.
Then there exists « € L(H) and y € L(H) such that zy € L(H).
The requirement

(n,y) ~ (n', y) implies [a(z,n), zy] = [a(x, n'), zy]
gives that a(x,n) = a(z,n’) for all n,n’ € N.
We also know that a(x,1) =1 and so a(z,n) =1 foralln € N
Finally consider

[n,1] = [a(1,n),1] = [a(zz~!,n), 227 = a(z, ez, n),1) = [1,1]. 0y



This two sided property holds whenever H is

H is finite,

e H is commutative,
e H is a group,
e H has no inverses at all

e H is a monoid of n X n matrices over a field
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This two sided property holds whenever H is

H is finite,

e H is commutative,
e H is a group,
e H has no inverses at all

e H is a monoid of n X n matrices over a field

The result can be generalised where L(H) is replaced with any prime
ideal.
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